Créer mon blog M'identifier

Laser weapon will be the main threaten to plane

Le 24 mai 2016, 11:06 dans Humeurs 0

Pre-reading:Recently,"Vindicator" laser weapon system has been put into testing,it will centaily bacame the main threaten for unmanned aerial vehicle.

Laser Pointer Pen

    Recently, Fort Sill firepower Laboratory (fires Battle Lab) tested the laser weapon system at Thompson mountain .One of the test target is a High Power Laser car equipped with 10kw Powerful Laser Pointer .The other is "Siterlynk" which is produced by General Dynamic Corp and Boeing equipped with a 2Kw Laser Pointer.Besides, equipment involved in the test also includes three radar systems (Q-53 "sentinel" radar and two Q-50 which can detect both airborne and ground threats simultaneously)

    The "Vindicator" weapon system equipped with a Green Laser that can achieve a variety of combat functions.We believe that it will be the main threaten for unmanned aerial vehicle.

Laser Pointer-Controlled Humans Closer to Reality

Le 19 mai 2016, 13:11 dans Humeurs 0

Laser Pointer-Controlled Humans Closer to Reality

Flashes of light may one day be used to control the human brain, and that day just got a lot closer.

HTPOW Buy 100mW Laser Pointer Green Pen Laser Pointer Non Slip Designs

Using burning laser pointers, researchers at the MIT Media Lab were able to activate a specific set of neurons in a monkey’s brain. Though the technique has been used to control and explore neural circuits in fish, flies and rodents, this is the first time the much-hyped technology has ever been used in primates.

“It paves the way for new therapies that could target a number of psychiatric disorders,” said MIT neuroscientist Ed Boyden, who led the research with postdoctoral fellow Xue Han. “This is very exciting from a translational standpoint.”

The beauty of this optogenetic technique is its specificity. By using a combination of lasers and genetic engineering, scientists can control, to the millisecond, the firing of a specific class of neurons, allowing them to pinpoint problematic cells and circuits while leaving innocent bystanders alone, thus minimizing potential side effects.

Viruses are engineered to infect neurons with a special type of channel, originally discovered in algae, which is sensitive to light. Once a most powerful lasershines on the infected neurons, the channels snap open, ions rush into the cell, and the neuron fires.

Crucial to the technique is that the virus is only injected into a very small part of the brain, and only a certain class of neurons, once infected, actually turn the channel on. The sharp laser beam further zeros in on a small portion of the brain. This precise aim is in contrast to current techniques, such as drugs and electrodes, both of which have a much broader reach.

HTPOW 200mw Laser Pointer Green Laser Pointer Pen High Powered Lasers

The optogenetic method was pioneered in 2005 by Boyden and Karl Deisseroth at Stanford University and has since been used to understand how circuits of neurons control various behaviors, such as learning in mice and predator escape in fish. But until now, scientists had never demonstrated the technique in primates — a move essential for developing therapeutic uses for the technology in humans.

Boyden’s new research, published Wednesday in Neuron, demonstrates not only that the technology works in primates, but also that it is safe. The rhesus macaques received multiple rounds of injections and laser pointer 500mw stimulations over the course of eight or nine months without damaging the neurons or activating the brain’s immune system, an obvious concern when viruses are involved.

“Many disorders are associated with changes in specific cell types,” said Boyden. “For therapeutic purposes, you want to affect certain cells, but you want to leave normal cells intact. The ability to use light to turn specific cells on and off with very precise timing could in principle allow new therapies.”

HTPOW Buy 50mw Green Laser Pointer Business Laser Pen 50mw

Future applications could involve using light-emitting neural prosthetics to replace the electrodes used in deep brain stimulation, which currently activate or silence a broad range of neurons. Deep brain stimulation has shown promise in treatments of Parkinson’s disease, epilepsy and depression, but it has a number of side effects, stemming in part from its lack of specificity.

“Our ability to remedy problems in the brain may ultimately be limited by how many side effects occur,” said Boyden. “We could find ways to shut down seizures but the side effects might be intolerable. By pinpointing specific cell types, we could craft therapeutic neuromodulators and directly develop therapies, while preserving a high degree of well-being.”

Proving the method works in primate brains paves the way not only for cleaner therapies, but also for understanding the relationship between specific neural circuits and behaviors, particularly higher cognitive functions.

Genetically, mice are ideal model organisms — but their behavioral repertoire isn’t very sophisticated. If neuroscientists hope to understand and treat problems like ADHD, schizophrenia, depression and compulsive behaviors like addiction, they can run far-more-powerful experiments using primates.

1000mw green laser pointers this is a very important and exciting step forward for all systems neuroscience,” said a neuroscientist who preferred to remain anonymous due to recent attacks against primate researchers.

“There are many limitations with the current way we try to understand neural circuits, primarily the lack of specificity. The hope is that as this sort of research continues in labs around the world, it will become possible to specifically target many different classes of neurons. We can learn how each of them contributes to specific cognitive functions.”

laser for sale

Powerful Laser Pointer

Le 13 mai 2016, 12:46 dans Humeurs 0

Powerful Laser Pointer

After more than a century of popular sci-fi fantasies that feature deadly energy weapons, including War of the Worlds, Flash Gordon, Buck Rogers, Star Trek and Star Wars, it looks like the ray gun has finally arrived in the real world.

High Powered Laser Pointer

And even if the first ray guns out of the lab can barely fit on the bed of a 30-ton off-road truck rather than in a soldier’s palm, the novel, "speed-of-light" capabilities that burning laser pointers could bring to the battlefield has drawn the keen interest of the Pentagon brass, which spends about $400 million a year on directed-energy beam weapons.

At the end of this year, which marks a half-century of amazing progress in lasers, defense contractors Northrop Grumman and Boeing plan to test-fire a prototype mobile laser weapon against examples of the lethal ordnance—rockets, artillery, mortars—that insurgents in Afghanistan and elsewhere shoot at U.S. troops every day, says Mark Neice, director of the Department of Defense's High Energy Laser Joint Technology Office in Albuquerque, N.M. As long as such an area-defense system is fed electrical power (from the grid or battery packs), its 100-kilowatt, solid-state, or electric, laser should be able to use its “unlimited magazine” of low-cost shots and ultra-precision tracking/targeting system to zap out of the air multiple inbound munitions from several kilometers away, he explains.

Weapons engineers will use the live-fire tests of the one-micron-wavelength (infrared) beam, which will take place at White Sands Missile Range in New Mexico, "to validate our notional models of beam propagation," Neice says. These results, “will allow us to determine what targets we can take on, at what power levels, what ranges and so forth.” The U.S. Army hopes that 10000mw laser pointer cannons can shield its bases from insurgent attacks while minimizing the risk of collateral damage to the civilian populations among which guerrillas often hide. A cannon’s powerful beam will be able reach out to incoming weaponry, and either detonate, disable or knock them off-course, whereas its ultra-precision aiming capability would presumably enable troops to pick off ground targets without hitting nearby non-combatants.

laser pointer pen price

The U.S. Air Force has in the meantime taken the lead in a project sponsored by the Defense Advanced Research Projects Agency (DARPA) to develop even more powerful and compact solid-state lasers that could fit on combat aircraft. Such systems could provide the nation’s air arm with what Michael W. Zmuda, manager of the Air Force Research Lab’s Electric Laser on Large Aircraft (ELLA) program, calls the “game-changing capability” to carry out beyond-the-horizon, air-to-air engagements and precisely targeted, air-to-ground strikes. “It would open up a raft of new tactical and defensive roles, such as defeating targets that are close to our own troops while avoiding collateral damage to civilians and property, as well as a range [of] rapid-response missions against a whole new set of targets,” he says.

The Air Force plans to fit a B1-B bomber with a new 150-kilowatt solid-state laser that will be built by the winner of a contract competition between General Atomics Aeronautical (GAA) and Textron Defense. The original DARPA effort arose when “we realized that a laser beam propagates much more efficiently 1,000 meters off the ground, where atmospheric distortion and scattering effects are much less pronounced,” according to Michael Perry, vice president at GAA. To fit in a fighter jet, one of the chief Pentagon goals, the airborne laser weapon will need to generate around five kilowatts per kilogram which means the technology “has to be reduced in size and weight by a factor of 10 over the current ground-based system,” Perry notes.

Meanwhile, U.S. Navy researchers are learning to cope with the extra difficulties of running a finely tuned electro-optical device in the harsh maritime conditions near the sea surface, where water vapor in the air tends to scatter and attenuate directed-energy beams. Navy planners are interested in using lasers in a “counter-materiel role” to help naval vessels fend off harassing attacks by squadrons of small armed boats such as occurred in early 2008 in the Strait of Hormuz, says Dan Wildt, vice president of directed energy systems at Northrop Grumman. Though the Navy is not saying specifically, it is thought that a relatively low-power laser beam could set alight wood or glass-fiber hulls, fuel or vulnerable weapons from stand-off distances of a kilometer or more. Wildt’s company is supplying a 15-kilowatt solid-state laser pointer 1000mw for Navy tests at a Pacific range later this year.

Laser Pointer 1000mw

Northrop Grumman and others are also working on switchable free-electron lasers that can fire beams of two or more different wavelengths of light.* These weapons could provide ship defenses with more flexible means to better penetrate the sea haze and protect against supersonic cruise missiles and other aerial threats. Free-electron lasers employ an array of electromagnets called a wiggler or undulator to force a beam of electrons to travel in a sinusoidal path that makes them release energetic, in-phase photons that form a powerful laser beam. Changes to the electron beam or the wiggler’s magnetic field alters the wavelength of the resulting laser beam.

Much of the recent interest in military laser technology stems from recent progress in solid-state, or electric, laser technology. These sources generate powerful, coherent light beams when arrays of semiconductor laser diodes pump light into the faces of “slabs” or rods—special ceramic lasing media that amplify the light greatly. The slabs are ganged into chains that progressively boost the output beam power. Over the past few years, contractors have demonstrated solid-state lasers capable of producing over 100 kilowatts of power, which specialists consider the minimum weapons-grade power rating.

Weapons-grade electric lasers have an Achilles heel, however. Their energy conversion efficiencies are only 20 to 30 percent, which means most of the input power is lost to heat. To dissipate the waste heat that would otherwise cause thermal distortions in the internal light path and reduce optical transmission, electric lasers require bulky, power-hungry liquid-cooling systems, says Mike Rinn, vice president at Boeing. Future mobile lasers will have to operate much more efficiently, to avoid the need both for huge, energy-sapping coolers and perhaps for batteries altogether if they could run directly off of a vehicle’s engine power. Two laser technologies that could fit the requirement, Rinn says, are the fiber 3000mw laser pointer, where the lasing material is a fiber-optic material, and the so-called hybrid laser, in which laser diodes pump a gas-phase lasing media.

laser pointer 3000mw

Voir la suite ≫